منابع مشابه
Hartley Series Direct Method for Variational Problems
The computational method based on using the operational matrix of anorthogonal function for solving variational problems is computeroriented. In this approach, a truncated Hartley series together withthe operational matrix of integration and integration of the crossproduct of two cas vectors are used for finding the solution ofvariational problems. Two illustrative...
متن کاملStrong convergence for variational inequalities and equilibrium problems and representations
We introduce an implicit method for nding a common element of the set of solutions of systems of equilibrium problems and the set of common xed points of a sequence of nonexpansive mappings and a representation of nonexpansive mappings. Then we prove the strong convergence of the proposed implicit schemes to the unique solution of a variational inequality, which is the optimality condition for ...
متن کاملA Survey of Direct Methods for Solving Variational Problems
This study presents a comparative survey of direct methods for solving Variational Problems. Thisproblems can be used to solve various differential equations in physics and chemistry like RateEquation for a chemical reaction. There are procedures that any type of a differential equation isconvertible to a variational problem. Therefore finding the solution of a differential equation isequivalen...
متن کاملSymmetries of Variational Problems
The applications of symmetry groups to problems arising in the calculus of variations have their origins in the late papers of Lie, e.g., [34], which introduced the subject of “integral invariants”. Lie showed how the symmetry group of a variational problem can be readily computed based on an adaptation of the infinitesimal method used to compute symmetry groups of differential equations. Moreo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin de la Société mathématique de France
سال: 1990
ISSN: 0037-9484,2102-622X
DOI: 10.24033/bsmf.2141